Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration.
نویسندگان
چکیده
We studied the effects of the molting hormone 20-hydroxyecdysone (20E) on leg sensory-motor networks of the red swamp crayfish, Procambarus clarkii. The hormone was injected in isolated crayfish and network activity was analyzed 3 days after injection using electrophysiology on an in vitro preparation of the leg locomotor network. This 20E treatment deeply reduced motor activity, by affecting both intrinsic motoneuron (MN) properties and sensory-motor integration. Indeed, we noticed a general decrease in motor nerve tonic activities, principally in depressor and promotor nerves. Moreover, intracellular recordings of depressor MNs confirmed a decrease of MN excitability due to a drop in input resistance. In parallel, sensory inputs originating from a proprioceptor, which codes joint movements controlled by these MNs, were also reduced. The shape of excitatory post-synaptic potentials (PSPs) triggered in MNs by sensory activity of this proprioceptor showed a reduction of polysynaptic components, whereas inhibitory PSPs were suppressed, demonstrating that 20E acted also on interneurons relaying sensory to motor inputs. Consequently, 20E injection modified the whole sensory-motor loop, as demonstrated by the alteration of the resistance reflex amplitude. These locomotor network changes induced by 20E were consistent with the decrease of locomotion observed in a behavioral test. In summary, 20E controls locomotion during crayfish premolt by acting on both MN excitability and sensory-motor integration. Among these cooperative effects, the drop of input resistance of MNs seems to be mostly responsible for the reduction of motor activity.
منابع مشابه
effectiveness of sensory-motor integration on self-esteem and performance mathematical in male students with math learning disorder in Kerman
Objective: The aim of this study was to investigate the effectiveness of sensory-motor integration intervention on students' self-esteem and mathematical performance with learning disabilities. Method: The research method was quasi-experimental with pre-test-post-test design with control group and follow-up stage. The statistical population of this study consisted of male students with learning...
متن کاملThe Effect of Sensory Integration on the Attention and Motor Skills of Students With Down Syndrome
Objectives: Sensory integration training plays a crucial role on the attention span and motor skills of students with Down syndrome. The present research aimed to investigate the effect of sensory integration training on the attention span and motor skills of students with Down syndrome. Methods: This was a quasi-experimental research with a pretest, posttest design and control group. Partici...
متن کاملNeuronal Mechanisms of Hyperexcitability in Individuals with Spasticity after Spinal Cord Injury and Individuals with Bruxism
Motoneuron hyperexcitability is a characteristic of several different motor disorders. We examined neuronal mechanisms of hyperexcitability in two of these disorders: spasticity after spinal cord injury (SCI) and bruxism. Involuntary muscle spasms after SCI occur as a result of uncontrolled increases in motoneuron excitability. Brainstem-derived serotonin (5HT) and noradrenaline (NA) normally f...
متن کاملSteroid regulation of excitability in identified insect neurosecretory cells.
In the moth Manduca sexta, the declining ecdysteroid titer on the final day of the molt from the fourth to the fifth larval instar acts on the ventromedial neurosecretory cells (VM cells) to stimulate the release of eclosion hormone (EH). EH then triggers the motor programs involved in ecdysis behavior. Intracellular recordings that were made from the VM cells throughout the intermolt and molti...
متن کاملActive motor neurons potentiate their own sensory inputs via glutamate-induced long-term potentiation.
Adaptive motor control is based mainly on the processing and integration of proprioceptive feedback information. In crayfish walking leg, many of these operations are performed directly by the motor neurons (MNs), which are connected monosynaptically by sensory afferents (CBTs) originating from a chordotonal organ that encodes vertical limb movements. An in vitro preparation of the crayfish CNS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 10 شماره
صفحات -
تاریخ انتشار 2013